A Coastal Atmosphere-Ocean Coupled System (CAOCS) for East Asian Marginal Sea (EAMS) Prediction

Peter C. Chu and Shihua Lu Naval Postgraduate School Monterey, CA 93943, USA

Coastal Model

Necessity for Air-Ocean Coupling

 (1) Sparse Meteorological Observation over Ocean

(2) Uncertain Surface Fluxes

• (3) Nowcast/Forecast

Uncertain Atmospheric Forcing

The track of the tropical cyclone Ernie 4-18 November, 1996 (from Chu et al., 1998).

RMS Difference Between NSCAT and NCEP Winds

Temporally varying root-mean-square difference between daily mean NSCAT and NCEP winds over the whole South China Sea (from Chu et al., 1998).

Temporally Varying RMS Difference Between POM Model Results Under the Two Wind Forcing

(Chu et al. 1998, JGR)

Surface elevation

Temporally Varying RMS Difference Between POM Model Results Under the Two Wind Forcing

(Chu et al. 1998, JGR)

Velocity

Temporally Varying RMS Difference Between POM Model Results Under the Two Wind Forcing (Chu et al. 1998, JGR)

Temperature

CAOCS Components

Atmosphere: MM5-V3.4

Ocean: POM

Land Surface: BATS

CAOCS for East Asian Marginal Sea Prediction

Chu et al. (1999, 2000)

Atmospheric Circulation in EAMS

East Asian Circulation System

Nitani (1972)

Beardsley et al. (1983)

Water Mass Distribution of the Yellow Sea (Kondo 1985)

Area for Atmospheric Model

Distribution of Vegetation

Area for Ocean Model

Ocean Bottom

CAOCS Numerics

- MM5V3.4
 - Resolution
 - Horizontal: 30 km
 - Vertical: 16 Pressure Levels
 - Time step: 2 min
- POM
 - Resolution
 - Horizontal: 1/6° × 1/6°
 - Vertical: 23 σ levels
 - Time Steps: 25 s, 15 min

Ocean-Atmospheric Coupling

- Surface fluxes (excluding solar radiation) are of opposite signs and applied synchronously to MM5 and POM
- MM5 and POM Update fluxes every 15 min
- SST for MM5 is obtained from POM
- Ocean wave effects (ongoing)

Lateral Boundary Conditions

MM5: ECMWF T42

POM: Lateral Transport at 142°E

MM5 Initialization

 Initialized from: 30 April 1998 (ECMWF T42)

Three-Step Initialization of POM

- (1) Spin-up
 - Initial conditions: annual mean (T,S) + zero velocity
 - Climatological annual mean winds + Restoring type thermohaline flux (2 years)
- (2) Climatological Forcing
 - Monthly mean winds + thermohaline fluxes from COADS (3 years)
- (3) Synoptic Forcing
 - Winds and thermohaline fluxes from NCEP (1/1/96 4/30/98)
- (4) The final state of the previous step is the initial state of the following step

Simulated Surface Air Temperature, May 98

Evaluation of CAOCS Using the South China Sea Monsoon Experiment (SCSMEX) Data

• IOP (April – June 1998)

T-S Diagram from SCSMEX Observations

Skill-Score

Model-Data Difference

$$\Delta \psi(x_i, y_j; z, t) = \psi_m(x_i, y_j, z, t) - \psi_o(x_i, y_j, z, t).$$

Mean Square Error

$$MSE(z,t) = \sum_{i} \sum_{j} \frac{1}{N} \left[\Delta \psi(x_i, y_j, z, t) \right]^2$$

Skill-Score (SS)

$$SS = 1 - \frac{\text{MSE}(m, o)}{\text{MSE}(c, o)},$$

SS > 0, Model has capability

Scatter Diagrams Between Model and Observation

Histograms of (Model – Obs)

RMS Error

Conclusions

- CAOCS is a useful tool for studying coastal dynamics
- CAOCS has a capability to simulate and predict current system and thermohaline structure,
- CAOCS needs a reliable wave model (ongoing work)